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inaregion D:|y(m}[< H, m=0, 1, ... (H = const).

Theorem 2. Let the systems (21) and (2) be connected by a relation of the type
(5). If the zero solution of the system (2) is exponentially stable, then for sufficiently
small ¥ and M the zero solution of the system (21) will also be exponentially stable,

The proof of Theorem 2 differs from that of Theorem 1 only in the fact that M in
the inequality (11) is replaced by M - y.

The author is thankful to G, S, Iudaev for statement of the problem.
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We prove the equivalence of the equations of motion of nonholonomic systems
with constraints linear in velocities, obtained by various methods. At present, the
equations of motion of nonholonomic systems exist in various forms, Naturally,
the question of their identity to each other was brought up in [1— 3], and the
problem was also discussed in [4 — 8] and in the dissertation of M. I, Efimov ( *).

1, The author of [1— 3] postulates that the final form of the equations of motion of
a system obtained by transforming the general dynamic equations depends on the point
at which the equations of nonholonomic constraints are taken into account, He states
that in the general case of arbitrary nonholonomic systems with constraints which are
linear in velocities, the equations constructed by different methods cannot be guaranteed
to be identical. Volterra [9], Appell [10] and MacMillan [11] derive the equations of
motion from the general dynamic equation in Cartesian coordinates and bring the non-
holonomic constraints into the discussion at once. Hamel [12], Chaplygin [13] and Voro-~
nets [14] bring in the nonholonomic constraints after the general dynamic equations have
been transformed to the generalized coordinates. In the opinion of the author of [1—3],
the equations of motion obtained using the methods of Volterra, Appell and MacMillan
on one hand, and the methods of Voronets (Chaplygin) and Hamel on the other hand,will
not, in general, be identical, i.e. the systems of equations will not be equivalent to each

*) Efimov, M, I., On the Chaplygin equations for nonholonomic systems. Gandi-
date's dissertation, Inst, mekhaniki, Akad. Nauk SSSR, 1953.
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other. To refute this statement, it is sufficient to show that the equations of motion ob-
tained by one of the methods of the first group (Volterra, Appell and MacMillan) coin-
cide with the equations of motion obtained by one on the methods of the second group
(Voronets, Hamel). We shall prove that the Appell equations coincide with the Voronets
equations for any nonholonomic system with constraints linear in velocities.

Let the nonholonomic constraints imposed on a system be given by the equations
1

g7 = D byd + b (=141, 142, ..., n) (1.1)
k=1
Differentiating the constraint equations with respect to time, we obtain

qln= Zb{qu“_}-'“ =1+ 1,142,..., n) (1.2)
k=1
in which the terms containing no generalized accelerations have been omitted. The
Appell equations for this system have the form [8]

_08*
A e — k=1121"-1l 1.3
51, Qg ( ) (1.3)
Here S* denotes the acceleration energy transformed with the nonholonomic constraints
taken into account and Qi* is the generalized force corresponding to the independent
increment 8¢x. If & and 7 denote the acceleration and kinetic energies of the system
not yet transformed under the nonholonomic constraints, then [15]

as a oT ar
—— =y =5 (v=1,2,.., .., 1.4
5 =0 Bay ", | ) (L.4)
The energy of acceleration § depends on the generalized accelerations g¢; entering

it explicitly, and by means of the relation for qi" given by (1.2). Therefore [8]

a8* XY
—w =t 1.5
% 6q i= %—1 9g;" L (-9

Let us denote by T* the kinetic energy of the system transformed with the constraints
(1. 1) taken into account. Then n
or+* _ oT Z ar

e Ba by (1.6)
dq, 9, i1 dg;
Differentiating (1. 6) with respect to time, we obtain
n
d ar d ar* aT  dby
+ ) T T~ D B e (A
( dt 6qk i% LT dg; dt g, i-§{-1 ag; dt

Further transforming Egs, (1. 3) using the relations (1. 4),(1.5) and (1, 7) and eliminat-
ing the quantities 87T / dgx and AT [/ dgy by means of the relations

!
o = oT o7 (2 abi’q +6b{) (v=1, 2 4 n) (1.8
o1, oq, & B \ AT, T Gy, S fe W OLE)

=l+1
we obtain the Voronets equations
n n

d oT* oT* Zb aT* ZB or —=Q (k=1,2 ! 1.9
_— —— e ik - ik Kk (  ly &y eeey ) (' )
dt aqk 6qk Tt 9q; = aq;
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_ dby, by g o
B«.k‘— dt El( aqk +i lz-i_ 7 1k) qJ %1 aqi ik
valid for any nonholonomic system with constraints linear in velocities, since they were
derived without any restrictions being placed on the coefficients of the constraint equa-
tions and on the kinetic energy of the system.

In the course of transforming the Appell equations into the Voronets equations we did
not make any additional physical assumptions, and the only transformations we used were
identity transformations. This implies that the Appell and the Voronets equations are
identical. We must of course remember that the dependent generalized velocities must
be eliminated from the expressions 47 / d¢;" in the Voronets equations, using the con-
straint equations (1. 1).

In the particular case of Chaplygin systems, the Appell equations coincide with the
Chaplygin equations.

A case of a nonholonomic system moving without the influence of the active forces,
is given in [3]). The system is determined by three geometrical coordinates ¢1, ¢s, ¢35
with one nonholonomic ideal constraint ¢; = ¢s¢;". The equations of motion are con-
structed in the Chaplygin and the Appell forms (see formulas (as) and (a,¢) in [3]) and
compared, to reach the false conclusion that they differ explicitly from each other. In
fact no difference exists; if we use the constraint equation (a,) to eliminate the depen-
dent generalized velocity ¢;” from the expression 97 / dg," = ¢," in the Chaplygin equa-
tions (as) ,then the equations of motion in the Chaplygin and the Appell forms will be-
come identical,

Naturally, we can also prove the equivalence of the equations of motion of nonholo-
nomic systems constructed by the MacMillan or Volterra methods with those constructed
by the Voronets or Hamel methods.

2. Let us now pause on the Hamel equations [12]. In the opinion of the author of [3]
the Hamel method can be used to obtain two, quite different systems of equations of mo-
tion, depending on at which point we take the nonholonomic constraints into account,
whether it is before, or after differentiating the expression for the kinetic energy with
respect to the quasi-velocities. But the very process of deriving the Hamel equations
shows that these equations contain the derivatives of the kinetic energy I' with respect
to all quasi-velocities, therefore the nonholonomic constraints must not be taken into
account when constructing 7 ; they can be brought in only after calculating the kinetic
energy derivatives with respect to the quasi-velocities [8]. This implies that the Hamel
method yields a single, unique system of equations of motion, and this system will be
equivalent to systems obtained by other methods.

3. We shall point out the error made by the author of [4] in constructing the equa-
tions of motion of a gyro gimbal, using the Volterra method. In [4] the author investigated
the motion of a gyro gimbal with a linear nonholonomic constraint o’ — ¢’ sin & = 0
imposed on it, and the Volterra method was used to derive the system of equations of
motion of the gimbal (see Egs.(20) in [4]). The author used an inconsistent system of
five equations with four unknowns. From this system he separated a system of four equa-
tions, assumed the fifth equation to be compatible and solved it in the bilinear covari-
ants of the nonholonomic coordinates. This however contradicts the rules of higher alge-
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bra, Let us obtain the correct equations of motion of a gyro gimbal in nonholonomic
coordinates using the Volterra method given in [15]. Setting a' = p,, p" = ps, ¥ = Ps»
4 = pg, ¥ = py/sin ¥ and assuming

dda. — dda = 0, 8dB — ddp = 0, bdy — dby = 0, 840 — d60 = 0 3.1

we obtain
9
oW — b = S (0780 —o'bD) (3.2

Further, transforming the general contral equation [8]

n n
d
_“7§1 gf 8g, — 8T - 2 61; (6q 75) = 2 Q,8,

with the generalized coordinates ¢, = &, ¢ =B, ¢ = v, @ = ﬂ gs = ¥ and the rela-
tions (3. 1) and (3. 2) taken into account, we obtain the system of equations of motion of
the gyro gimbal, This system coincides with Eqs. (22) of [4] obtained by the Chaplygin
method. The equations obtained by the author of [4] using the Hamel method are, as
expected, identical to the equations obtained by the Chaplygin method. Thus we find no
difference between the equations of motion constructed by different methods for this case,
and it follows that the conclusions of the author of [4] were erroneous,

Everything we said above implies that the equations of motion of the nonholonomic
systems obtained by different methods will be identical, i.e. their final form does not
depend on the stage of computation at which the constraints are taken into account. The
choice of the method of constructing the differential equations of motion is governed by
the computational convenience, and this point of view was also endorsed by Lur'e in [8].
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A version of the geometrically nonlinear theory of elastic muitilayered shells
subjected to a nonconservative load is proposed. Transverse shear strains in the
layers and strains in the direction of the normal to the middle surface are taken
into account, As a rule, a description of the nonstationary dynamical processes
associated with shell buckling can be performed on the basis of a geometrically
nonlinear theory [1]. The behavior of multilayered plates and shells under large
deflections has been examined in [2—5]. A variational formulation, which is
valid for conservative loads acting on a shell, is used in [5] to derive the geomet-
rically nonlinear equations. The variational principle is formulated in this paper
in a form also applicable in the case of no potential of the external forces. One
of the advantages of the approach developed here as compared with the results
of [5] is the additional possibility of describing the local dynamical buckling of
the shell in modes associated with the change in its thickness,

1, Variational principle for a three-dimensional body, The vari-
ational principle of elasticity theory for a three-dimensional body under large displace-
ments is written as follows:

ty
1 1 .
8Jo=24 S (3 {— 5 El’fﬂeiksﬂ + otk ["’ik—' 9" (“ik + Myt “{!nki)] + (1.1
0
= 1 Bu; gyt
0% (ny, — V) + 5 p 57 T} v + § Pluds +
1

§(uk—Uk)9"‘nidS)=0, i, k=1,2, 3
2 .

5Pt =0 (1.2

Here Eikil is the elasticity tensor, p is the material density, u; are the displacement



